Bone Marrow-Derived Mesenchymal Stem Cells Improve the Functioning of Neurotrophic Factors in a Mouse Model of Diabetic Neuropathy
نویسندگان
چکیده
Diabetic neuropathy is one of the most frequent and troublesome complications of diabetes. Although there has been a continuous increase in the incidence of diabetic neuropathy, treatments have yet to be found that effectively treat diabetic neuropathy. Neurotrophic factors are proteins that promote the survival of specific neuronal populations. They also play key roles in the regeneration of peripheral nervous system. Recent evidence from diabetic animal models and human diabetic subjects suggest that reduced availability of neurotrophic factors may contribute to the pathogenesis of diabetic neuropathy. One way to reverse this effect is to take advantage of the finding that bone marrow derived mesenchymal stem cells (BM-MSCs) promote peripheral nerve repair and the functioning of neurotrophic factors. Therefore, we speculated that treatment with BM-MSCs could be a viable therapeutic strategy for diabetic neuropathy. The present study was designed to examine the possible beneficial effect of BM-MSCs on functions of neurotrophic factors in diabetic neuropathy. To assess this possibility, we used an in vivo streptozotocin-induced diabetic neuropathy mouse model. Quantitative real-time polymerase-chain reacion showed that BM-MSCs significantly increase expression levels of neurotrophic factors. Also, BM-MSCs ameliorated nerve conduction velocity in streptozotocin-treated mice. These results may help to elucidate the mechanism by which BM-MSCs function as a cell therapy agent in diabetic neuropathy.
منابع مشابه
Effect of bone marrow derived mesenchymal stem cells on lung pathology and inflammation in ovalbumin-induced asthma in mouse
Objective(s):Bone marrow-derived mesenchymal stem cells (BMSCs) have attracted significant interest to treat asthma and its complication. In this study, the effects of BMSCs on lung pathology and inflammation in an ovalbumin-induced asthma model in mouse were examined. Materials and Methods:BALB/c mice were divided into three groups: control group (animals were not sensitized), asthma group (an...
متن کاملUse of Undifferentiated Cultured Bone Marrow-Derived Mesenchymal Stem Cells for DDF Tendon Injuries Repair in Rabbits: A Quantitative and Qualitative Histopathological Study
Objective- To investigate the effect of intratendinous injection of bMSCs on the rate and extent of tendon healing after primary repair in a rabbit model. Design- Experimental study. Animals- Twenty seven skeletally mature New Zealand white rabbits weighing 1.8- 2.5 kg were used. Twenty rabbits were used as the experimental animals, and seven others were used as a source of bone marrow-derived ...
متن کاملThe Effect of Bone Marrow Derived Mesenchymal Stem Cells on the Survival of Random Skin Flap on Sterptozotocin-Induced Diabetic Rats
Background & Objective: Wound dressing and healing in diabetic patients is encountered with many problems. This study aims to investigate the effect of bone marrow derived mesenchymal stem cells (BM-MSCs) on the survival of random skin flap (RSF) on Streptozotocin-induced diabetic rats (STZ) using an optical microscope. Materials & Methods: In this study, 60 male Albino Wistar rats were used...
متن کاملEffects of BIO on proliferation and chondrogenic differentiation of mouse marrow-derived mesenchymal stem cells
In vitro expansion of mesenchymal stem cell (MSCs) into large number is necessary for their application in cell-based treatment of articular cartilage defects. On the other hand, some studies have indicated that BIO (6-Bromoindirubin-3-Oxime) possesses mitogenic effects on cell culture. The objective of the present study was to examine the effect of BIO on in vitro expansion and chondrogenic di...
متن کاملAnalysis of MiRNA-17 and MiRNA-146 Expression During Differentiation of Spermatogonial Stem Like Cells Derived from Mouse Bone Marrow Mesenchymal Stem Cells
In vitro derivation of germ cells from different stem cells sources has been challenging in the treatment of male infertility. MicroRNAs (miRNAs) have an essential role in gene expression at post-transcriptional level. The aim of this research was to find more about miRNA-17 and miRNA-146 expression during differentiation of spermatogonial stem cell like cells (SSC like cells) from mouse bone m...
متن کامل